Digital command value and controller card

Type VT-HACD-1

Features

▶ Component series 1X
▶ Use as command value card for generating, linking and standardizing signals
▶ Use as controller card for control loops with PIDT1 controller and optional state feedback

Features

▶ Substitutional closed-loop control (e.g. position control with superimposed pressure/force control) possible
▶ Input for digital measurement system SSI and incremental
▶ 6 analog inputs, voltage (±10 V, 0...10 V) and current (4...20 mA) selectable
▶ 3 analog outputs, 1x switchable voltage (±10 V, 0...10 V) or current (0...20 mA, 4...20 mA), 1x voltage (±10 V)
▶ Various possible signal linking and switch-over options
▶ Enable input and OK output
▶ 8 digital inputs
▶ 7 digital outputs, configurable
▶ Parameterizable ramp function
▶ 32 blocks with command values, speeds and controller parameters

Contents

Features 1
Ordering code 2
Software project planning 3
Functional description 4
Block diagram: VT-HACD-1, mode 1 - block calls 7
Block diagram: VT-HACD-1, mode 3 - structural editor 8
Technical data 10
Pin assignment of the male multipoint connector 12
Pin assignment of the D-Sub sockets 12
Dimensions 13
Project planning / maintenance instructions / additional information 14
Features (continued)

- Adjustment to hydraulic drive by means of area adjustment, characteristic curve correction, overlap compensation, residual velocity logic and zero point correction.
- ±10 V reference voltage output
- Front display with keys for parameter display and modification as well as diagnosis
- Serial interface RS232
- Up to 32 cards can be interconnected for parameterization and diagnosis via the local bus
- Configurable analog output (A03) led onto connector strip
- PROFIBUS DP, PROFIBUS DP in Motorola format, DeviceNet or CANopen for the communication with a superior control (For CANopen, there is no standard EDS file available as the data is transmitted by the CANopen PDOs.)

Ordering code

<table>
<thead>
<tr>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT-HACD</td>
<td>1</td>
<td>1X</td>
<td>V0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>01</th>
<th>Digital command value and controller card</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Standard command value and controller card</td>
</tr>
<tr>
<td>03</td>
<td>Component series 10 ... 19 (10 to 19: Unchanged technical data and pin assignment)</td>
</tr>
<tr>
<td>04</td>
<td>Basic device</td>
</tr>
<tr>
<td>05</td>
<td>With display</td>
</tr>
<tr>
<td>06</td>
<td>Without bus connection</td>
</tr>
<tr>
<td></td>
<td>PROFIBUS DP</td>
</tr>
<tr>
<td></td>
<td>DeviceNet</td>
</tr>
<tr>
<td></td>
<td>CANopen</td>
</tr>
<tr>
<td>07</td>
<td>Without valve output stage</td>
</tr>
<tr>
<td></td>
<td>With valve output stage for 4WRE, component series 2X with two solenoids (only in connection with PROFIBUS)</td>
</tr>
</tbody>
</table>

Required accessories:
- BODAC PC program, CD ordering information: SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/hacd
- Interface cable: Cable set VT-HACD-1X/03.0/HACD-PC (R900776897) or standard 1:1 cable
- Optionally available USB adapter VT-ZKO-USB/S-1-1X/V0/0
- Connector type 6ES7972-0BA42-0XA0 for PROFIBUS DP, mat. no. R901312863

Suitable card holders:
- Open card holder VT 3002-1-2X/64G (see data sheet 29928), mat. no. R900991843 (Only for control cabinet installation)
- Connection adapter VT 10812-2X/64G (see data sheet 30105), mat. no. R900713826

Bosch Rexroth AG, RE 30143, edition: 2013-10
Software project planning

Project planning
The creation of a parameter file forms the basis for the function of the HACD. The parameter file contains the block structure of the HACD in which the links of the variables will be created. The parameter files are created in BODAC. The parameter file can be created offline and transferred to the HACD by means of a PC.
Proceed as follows for this software project planning:
1. Selection of the HACD.
2. Application is defined by means of the block structure.
3. Setting of the parameter values (sensors, controllers...).
4. The data is sent to the HACD.
5. Storage of the data in the flash.
6. The setting and the machine sequence are optimized at the machine.

PC program BODAC
The user can use the BODAC PC program for the implementation of project planning tasks. BODAC can be used for the programming, setting and diagnosis of the HACD.

Scope of services
- Convenient dialog functions for the online or offline setting of the machine data
- Dialog window for the online setting of the parameter values
- Comprehensive options for displaying process variables, digital inputs, outputs, and flags
- Recording and graphical representation of up to eight process variables with great selection of trigger options

PC system requirements
- Windows XP, Windows Vista, Windows 7
- Memory usage 64 MB typical
- 250 MB of available hard disk capacity

Notice:
The BODAC PC program is not included in the scope of delivery. It can be downloaded on the Internet free of charge.
Download on the Internet: www.boschrexroth.com/hacd
Enquiries: support.hacd@boschrexroth.de

Service interface
- RS 232

Process connection
- PROFIBUS DP, PROFIBUS DP in Motorola format, CANopen for the communication with a superior control (for CANopen, there is no standard EDS file available)

More information
www.boschrexroth.com/hacd
Functional description

The command value and controller card VT-HACD-1 is set up as printed circuit board in Europe format 100 x 160 mm, fitted on both sides. A microcontroller controls the entire process, makes adjustments, establishes links and realizes the closed control loops. Data for configuration, command values and parameters are stored in a FLASH in a non-volatile form. The complete configuration is made by means of software, the card does not comprise jumpers or the like. For the configuration, the VT-HACD has to be connected to a PC via a serial interface (RS 232, 1:1 cable). The BODAC user interface is used for the entire configuration and also for the parameterization and diagnosis. The configuration and thus the creation of applications are very simple - you just have to link pre-defined functional components. For this purpose, no programming knowledge is necessary.

2 different modes are available:

▶ Mode 1 (not bus-enabled) – Block calls (condition as supplied)
 The 32 blocks can be called via the binary combination of the digital inputs DI1…DI5 + DI6 as "binary enable". This mode is functionally compatible with VT-SWKD.

▶ Mode 3 (bus-enabled) – Structural editor
 The structural editor is unlocked. Own motion sequences can be established. For this purpose, 32 blocks are available. Each block contains: Command value, ramp times, (velocity +, velocity –, S share) and controller parameters. Blocks are activated by setting trigger conditions: Setting digital inputs, comparing signals with freely definable thresholds or expiry of waiting periods. You can change to another mode by simply saving a corresponding parameter set which is included in the BODAC scope of delivery.

Signal linking

The VT-HACD has various signal linking options both for the input and the output side, whereas 2 signals each can be linked. These are functions such as addition, subtraction, multiplication, division as well as minimum/maximum value generator, area ratio and limiter:

+ = addition; Z = X + Y
− = subtraction; Z = X − Y
* = multiplication; Z = X * Y / 100
/ = division; Z = X / Y * 100
MIN = minimum value generator; Z = MIN (X, Y)
MAX = maximum value generator; Z = MAX (X, Y)
RATIO = ratio input:
 for RATIO >1: Z = X * RATIO − Y
 for RATIO <1: Z = X − Y / RATIO
 (e.g. area ratio for pressure differential measurement)
LIMIT = signal limiter: Z = MIN (|X|, |Y|) * X / |X|
JUMP = jump generator: Z = MAX (|X|, |Y|) * X / |X|
 with Z ... result
 X ... 1st signal
 Y ... 2nd signal

Analog I/O

For the 6 analog inputs, you can switch between ±10 V, 0...10 V, 0...20 mA and 4...20 mA by means of the software. For the analog output AO1, you can switch between ±10 V, 0...10 V, 0...20 mA and 4...20 mA by means of the software. AO2 is fixedly set to ±10 V. AO3 can be configured by means of software and is e.g. suitable for diagnosis purposes. The output is switched so that the whole range of the analog-digital connector is used. Both working range and error identification can be defined for all analog inputs. The analog outputs can be adjusted by means of amplification and offset.

Digital I/O

The VT-HACD has 9 digital inputs and 8 digital outputs. An input has the fixed functionality Enable, a digital output the fixed functionality OK. Further digital inputs are used for the triggering of blocks (see blocks and triggering). The function of each digital output can be determined by the selection from a predefined list:

▶ Command value = actual value
▶ Actual value higher or lower than the adjustable threshold
▶ Waiting time completed
▶ Ramp active
▶ Internal flag set
▶ Error flag set
Functional description (continued)

Digital position measurement system
If you use the VT-HACD as controller card, digital position measurement systems of type SSI or incremental can be used for actual value collection.

Limitations of use for the incremental encoder
The maximum frequency of the VT-HACD incremental encoder input (fG) is 100 kHz. The maximum travel velocity of the drive, the resolution (res) of the encoder system used and the possible signal evaluation by EXE (interpolation and digitalizing electronics) determine the frequency.

Determination formulas
Encoder resolution at given maximum velocity:

\[\text{Res} \ [\mu m] \geq \frac{v \ [m/s] \times 10^3}{f_G \ [kHz] \times \text{EXE}} \]

Velocity at specified encoder resolution:

\[v \ [m/s] \leq \frac{\text{Res} \ [\mu m] \times \text{EXE} \times f_G \ [kHz]}{10^3} \]

Controller
If the VT-HACD is used as controller card, you must select "Controller" for the signal connection [8]. The LCx signals indicate the command value branch, the LFBx signals indicate the actual value branch. [8] Both SSI encoder or incremental encoder [2] (digital measuring system) and one or more analog sensors can be used as actual value signal.

The controller structure is designed as PIDT1 controller, whereas each share can be activated or deactivated individually. Thus, also a P or PT1 controller can be implemented for example. The I share can additionally be controlled via a window (upper and lower limit).

Control parameters can be set in blocks or independently of blocks.

In mode 3, a state feedback can be used for dampening the controller output.

Adjustment to hydraulic system
For the optimum adjustment to the particularities of hydraulic drives, the following functions are implemented upstream the analog output:

- Direction-dependent gain [10]
 For positive and negative values, the amplification can be set separately. In this way, adjustment to the area ratio of a differential cylinder is possible.

- Characteristic curve correction [11]
 In this way, the progressive flow characteristics of proportional directional valves are compensated or an inflected characteristic curve is realized.

- Overlap jump/residual velocity [12]
 When using valves with positive overlap, a fine positioning can be used in case of a PDT1 controller in order to increase the static accuracy. This fine positioning can be selected according to the residual voltage principle and as overlap jump.

- Zero point correction (offset) [13]
 Serves the correction of the zero point of the connected proportional servo valve.
Functional description (continued)

Error detection and treatment
The VT-HACD supports numerous error monitoring possibilities:
- Monitoring of analog inputs for lower deviation or exceedance of the range
- Monitoring the position sensors for cable break
- Control error monitoring when configuring the HACD as controller
- Monitoring of the supply voltage, any internal voltage as well as the 10 V reference voltage
- Monitoring the microcontroller (watchdog) as well as the memory (checksum)

The error monitoring as well as its reaction can be configured as well.

Front operation
In connection with the four keys, the front display is used to display and change parameters as well as for diagnosis purposes.

The VT-HACD parameters are accessed via a corresponding menu structure. The parameter values can be displayed and changed.

The following parameters can be accessed:
- Command value and ramp parameters
- Actual values
- Control parameters
- Output parameters
- Analog I/O
- Position sensors

Changes in the configuration, i.e. changes in the signal linking, trigger conditions, error monitoring, etc. are not possible via the front operation.

The display of command and actual values as well as the output of error messages are available as diagnosis options.

Valve output stage [18] (optional)
The following applies to the valve output stage:
- Only available in connection with PROFIBUS
- Only for valves of type 4WRE...2X with two solenoids
- Can only be activated in mode 3

Error logics identify a cable break of the actual value cable of the valve position sensor. Readiness for operation is removed, a low signal is output at port d22 and the "OK" LED on the front plate goes out.

PC program BODAC
The BODAC PC program is used to configure, parameterize and diagnose the VT-HACD via a serial interface (RS 232). Via the local bus, up to 32 control electronics can be connected. Via BODAC, every control electronics is assigned a bus address. Reconnection of the serial interface cable is omitted. More information in document 30143-01-B.
Block diagram: VT-HACD-1, mode 3 - structural editor

1. Analog voltage or current inputs
2. SSI or incremental
3. Enable input and digital inputs
4. Analog input adjustment
5. Math. connection and/or controller
6. Digital command value + variable
7. Velocity +/-
8. S ramp +/-
9. LFB1 = variable
10. Internal command value + variable
11. Velocity +/-
12. S ramp +/-
13. Controller parameter
14. Enable
15. Shield
16. System earth
17. Digital inputs
18. Digital outputs
19. Thresholds
20. Internal flags
21. Error
22. Duration time
23. Block time
24. Trigger condition 1 AND
25. Trigger condition 2 OR

Bosch Rexroth AG, RE 30143, edition: 2013-10
14 Limitation
15 Analog voltage or current outputs
16 OK output and digital outputs
17 Math. connection of the outputs
18 Optional output stage

19 Oscillator/demodulator
20 CAN interface, optional
21 Local bus
Technical data (for applications outside these parameters, please consult us!)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>U_{B} 24 VDC</td>
</tr>
<tr>
<td>Upper limit value</td>
<td>$u_{B(t)}_{\text{max}}$ 30 V</td>
</tr>
<tr>
<td>Lower limit value</td>
<td>$u_{B(t)}_{\text{min}}$ 21 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_{max} Standby current consumption 250 mA</td>
</tr>
<tr>
<td>Fuse</td>
<td>I_{S} 4 A time-lag</td>
</tr>
<tr>
<td>Digital inputs</td>
<td>Signal log 0 = 0 to 5 V log 1 = 16 V to U_{B}</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>Signal log 0 = 0 to 5 V log 1 = 16 V to $(U_{B} - 3$ V) $I_{\text{max}} = 30$ mA</td>
</tr>
<tr>
<td>Analog inputs Al 1...6</td>
<td></td>
</tr>
<tr>
<td>Configuration as voltage input</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>U 0 to 10 V or ±10 V (configurable)</td>
</tr>
<tr>
<td>Input resistance</td>
<td>R_{e} 100 kΩ, > 10 MΩ for input Al 1</td>
</tr>
<tr>
<td>Resolution</td>
<td>5 mV for range ±10 V 2.5 mV for range 0…10 V</td>
</tr>
<tr>
<td>Non-linearity</td>
<td>< 10 mV</td>
</tr>
<tr>
<td>Configuration as current input</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>I 0…20 mA or 4…20 mA</td>
</tr>
<tr>
<td>Input resistance</td>
<td>R_{e} 100 Ω</td>
</tr>
<tr>
<td>Leakage current</td>
<td>0.15 % (with 500 Ω between pin AI x– and 0 V)</td>
</tr>
<tr>
<td>Resolution</td>
<td>5 μA</td>
</tr>
<tr>
<td>Analog outputs</td>
<td></td>
</tr>
<tr>
<td>AO 1 configuration as voltage output</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>U 0…10V or ±10 V (configurable)</td>
</tr>
<tr>
<td>Output current</td>
<td>I_{max} 10 mA</td>
</tr>
<tr>
<td>Load</td>
<td>$R_{L_{\text{min}}}$ 1 kΩ</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.25 mV (14 bit)</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>±15 mV (without noise)</td>
</tr>
<tr>
<td>AO 1 configuration as current output</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>I 0…20 mA or 4…20 mA (configurable)</td>
</tr>
<tr>
<td>Load</td>
<td>R_{max} 500 Ω</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.25 μA</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>±15 μA (without noise)</td>
</tr>
<tr>
<td>AO 2 / AO 3</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>U ±10 V</td>
</tr>
<tr>
<td>Output current</td>
<td>I_{max} 10 mA</td>
</tr>
<tr>
<td>Load</td>
<td>R_{min} 1 kΩ</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 mV (11 bit)</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>±25 mV (without noise)</td>
</tr>
<tr>
<td>Digital position transducers (encoders):</td>
<td></td>
</tr>
<tr>
<td>SSI transducer</td>
<td>Line receiver / line driver RS485</td>
</tr>
<tr>
<td>Incremental sensor</td>
<td>Signal level</td>
</tr>
<tr>
<td>Reference voltage</td>
<td>U ±10 V</td>
</tr>
<tr>
<td>Load</td>
<td>I_{max} 30 mA</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>< 20 mV</td>
</tr>
<tr>
<td>Scan time</td>
<td>t 2 ms</td>
</tr>
</tbody>
</table>
Technical data (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve output stage (optional)</td>
<td></td>
</tr>
<tr>
<td>Solenoid current per solenoid (I_{\text{max}})</td>
<td>2.5 A</td>
</tr>
<tr>
<td>Valve position sensor</td>
<td></td>
</tr>
<tr>
<td>Oscillator amplitude (U)</td>
<td>13 Vss</td>
</tr>
<tr>
<td>Oscillator frequency (f)</td>
<td>5.7 kHz</td>
</tr>
<tr>
<td>Coil resistance (R_{20})</td>
<td>Between coil connection 1 and 2: 130 to 164 Ω (20) Between coil connection 3 and 4: 21 to 24 Ω</td>
</tr>
</tbody>
</table>

For more technical data for valve 4WRE...2X see data sheet 29061.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial interface</td>
<td>RS 232 (front plate), D-Sub socket</td>
</tr>
<tr>
<td>Type of connection</td>
<td>64-pole male multipoint connector, DIN 41612, design G</td>
</tr>
<tr>
<td>Local bus, distance to the furthermost device</td>
<td>Max. 280 m line length</td>
</tr>
<tr>
<td>Card dimensions</td>
<td>Euro-card 100 x 160 mm, DIN 41494</td>
</tr>
<tr>
<td>Front plate dimensions: (l)</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>3 HE (128.4 mm) [5.06 inches]</td>
</tr>
<tr>
<td>Width soldering side</td>
<td>1 TE (5.08 mm) [0.20 inches]</td>
</tr>
<tr>
<td>Width component side</td>
<td>7 TE</td>
</tr>
<tr>
<td>Admissible operating temperature range (\vartheta)</td>
<td>0 to 50 °C [0 to 122 °F]</td>
</tr>
<tr>
<td>Storage temperature range (\vartheta)</td>
<td>-20 to +70 °C [0 to 158 °F]</td>
</tr>
<tr>
<td>Weight</td>
<td>0.2 kg</td>
</tr>
</tbody>
</table>

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30143-U.
Pin assignment of the male multipoint connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Row z</th>
<th>Row b</th>
<th>Row d</th>
<th>Row f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5)</td>
<td>Solenoid A+</td>
<td>MA+</td>
<td>Analog input</td>
<td>AI 3+</td>
</tr>
<tr>
<td>4 5)</td>
<td>Solenoid A−</td>
<td>MA−</td>
<td>Analog input</td>
<td>AI 3−</td>
</tr>
<tr>
<td>6 5)</td>
<td>Solenoid B+</td>
<td>MB+</td>
<td>Analog input</td>
<td>AI 2+ 1)</td>
</tr>
<tr>
<td>8 5)</td>
<td>Solenoid B−</td>
<td>MB−</td>
<td>Analog input</td>
<td>AI 2− 1)</td>
</tr>
<tr>
<td>10 5)</td>
<td>Shield</td>
<td></td>
<td>Analog input</td>
<td>AI 1+ 3)</td>
</tr>
<tr>
<td>12 5)</td>
<td>Position transducer of valve feed −</td>
<td>L1O−</td>
<td>Analog input</td>
<td>AI 1− 3)</td>
</tr>
<tr>
<td>14 5)</td>
<td>Position transducer of valve actual value −</td>
<td>L1I−</td>
<td>Analog input</td>
<td>AI 4+ 1)</td>
</tr>
<tr>
<td>16 5)</td>
<td>Position transducer of valve actual value +</td>
<td>L1I+</td>
<td>Analog input</td>
<td>AI 4− 1)</td>
</tr>
<tr>
<td>18 5)</td>
<td>Position transducer of valve feed +</td>
<td>L1O+</td>
<td>Analog input</td>
<td>AI 5+ 1)</td>
</tr>
<tr>
<td>20</td>
<td>System earth</td>
<td></td>
<td>Analog input</td>
<td>AI 5− 1)</td>
</tr>
<tr>
<td>22</td>
<td>Digital output</td>
<td>DO 3</td>
<td>Analog input</td>
<td>AI 6+ 1)</td>
</tr>
<tr>
<td>24</td>
<td>Digital output</td>
<td>DO 4</td>
<td>Analog input</td>
<td>AI 6− 1)</td>
</tr>
<tr>
<td>26</td>
<td>Digital output</td>
<td>DO 5</td>
<td>Analog output</td>
<td>AO 3, ±10 V</td>
</tr>
<tr>
<td>28</td>
<td>Digital output</td>
<td>DO 6</td>
<td>Analog GND 4)</td>
<td>Local bus</td>
</tr>
<tr>
<td>30</td>
<td>Uio: +24 V</td>
<td>−10 V</td>
<td>REF−</td>
<td>Analog output</td>
</tr>
<tr>
<td>32</td>
<td>LO: 0 V</td>
<td>+10 V</td>
<td>REF+</td>
<td>Analog output</td>
</tr>
</tbody>
</table>

1) By means of software, the inputs AI 2, 4, 5 and 6 can be set to 0…10 V, ±10 V, 0…20 mA or 4…20 mA.
2) By means of software, the output AO 1 can be set to 0…10 V, ±10 V, 0…20 mA or 4…20 mA.
3) This input has an input resistance $R_e > 10 \text{ MΩ}$.
4) Reference potential for AO 1, AO 2, AO 3, +10 V and −10 V
5) Only for option with valve output stage
n.c. Not used in basic version, however reserved for extensions.

Pin assignment of the D-Sub sockets on the front plate

RS 232
- Transmission data (RS 232)
- Reception data (RS 232)

PROFIBUS
- RxD/TxD-P (A/A’)
- DGND

Bosch Rexroth AG, RE 30143, edition: 2013-10
Dimensions (dimensions in mm [inch])
Project planning / maintenance instructions / additional information

Product documentation for VT-HACD-1

- 30143
 Technical data sheet (this document)
- 30143-B
 Installation and operating instructions
- 30143-01-B
 Commissioning and operating instructions
- 30143-U
 Environmental compatibility statement
- 30143-01-Z
 Commissioning instructions PROFIBUS DP interface
- 30143-02-Z
 Commissioning instructions CANopen interface
- 30143-03-Z
 Commissioning instructions DeviceNet interface
- 30143-Z
 Additional information for replacing the VT-SWKD by VT-HACD-1

- Use low-capacitance cables. If possible, design the cable connections without intermediate terminals.
- Electro-magnetic sources of interference (e.g. frequency converters) must not be arranged in the immediate vicinity of the control electronics.
- Power cables must not be laid in the immediate vicinity of the controller card.
- Lines of the control electronics must not be laid in the immediate vicinity of power cables.
- Pass the sensor lines separately.
- The distance to aerial lines, radios, and radar systems has to be 1 meter at least.
- Design the installation so that when the differential inputs are used, both inputs are always connected or disconnected at the same time.
- For switching command values, relays with gold-plated contacts have to be used. (Low voltages, low currents)
- Always shield command value lines and actual value cables. Connect the shield to “Shield” on the card side and leave the other side open as otherwise, there is the risk of ground loops.
- Use highly flexible CU conductors (at least 2.5 mm²) in order to connect the system earth
 The system earth is a main part of the EMC protection of the controller card. Here, interference is eliminated which is transported to the controller card via the data and supply voltage lines. This function is only ensured if the system earth itself does not introduce interference into the controller card. Rexroth recommends screening the solenoid conductors as well.
Notes